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Introduction

� OPT++ is an open source toolkit for general 
nonlinear optimization problems

� Original development started in 1992 at Sandia 
National Labs/CA

� Major contributors
� Juan Meza, LBNL
� Ricardo Oliva, LBNL
� Patty Hough, SNL/CA
� Pam Williams, SNL/CA
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Total = 338
Other (Country not identified) = 120
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Simulation-based optimization problems

� Predict properties of 
nanostructures or design 
nanostructures with desired 
properties

� Protein folding problems: 
create secondary structures 
and obtain predictions of α-
helices and β-sheets. 

http://graphics.cs.ucdavis.edu/~okreylos/ResDev/ProtoShop/index.html
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Parameter identification example

� Find model parameters, 
satisfying some bounds, 
for which the simulation 
matches the observed 
temperature profiles

� Computing objective 
function requires 
running thermal 
analysis code

� Each simulation 
requires approximately 
7 hours on 1 processor
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Formulation of parameter ID problem

� Objective function 
consists of computing 
the temperature 
difference between 
simulation results and 
experimental data

� Optimization 
landscape contains 
many local minima

� Uncertainty in both 
the measurements 
and the model 
parameters
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General Optimization Problem
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Optimization Problem Types

� Unconstrained optimization
� Bound constrained optimization

� Only upper and lower bounds
� Sometimes called “box” constraints

� General nonlinearly constrained optimization
� Equality and inequality constraints
� Usually nonlinear

� Some special case classes (not currently handled in 
OPT++)
� Linear programming (function and constraints linear)
� Quadratic programming (quadratic function, linear 

constraints)
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Some working assumptions

�Objective function is smooth
� Usually true, but simulations can create noisy 

behavior
�Twice continuously differentiable

� Usually true, but difficult to prove
�Constraints are linearly independent

� Users can sometimes over-specify or incorrectly 
guess constraints

�Expensive objective functions
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OPT++ Philosophy

� Problem should be defined in terms the user 
understands
� Do I have second derivatives available? and not
� Is my objective function twice continuously differentiable?

� Solution methods should be easily interchangeable
� Once the problem is set up, methods should be easy to 

interchange so that the user can compare algorithms

� Common components of algorithms should be 
interchangeable
� Algorithm developers should be able to re-use common 

components from other algorithms, for example line 
searches, step computations, etc.



12Fourth Workshop on the DOE Advanced Computational Software Collection  
Berkeley, CA, August 5-8, 2003

Classes of Problems in OPT++

�Four major classes of problems available
� NLF0(ndim, fcn, init_fcn, constraint)

• Basic nonlinear function, no derivative information 
available

� NLF1(ndim, fcn, init_fcn, constraint)
• Nonlinear function, first derivative information available

� FDNLF1(ndim, fcn, init_fcn, constraint)
• Nonlinear function, first derivative information 

approximated

� NLF2(ndim, fcn, init_fcn, constraint)
• Nonlinear function, first and second derivative 

information available
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Classes of Solvers in OPT++

� Direct search
� No derivative information required

� Conjugate Gradient
� Derivative information may be available but doesn’t use 

quadratic information

� Newton-type methods
� Algorithm attempts to use/approximate quadratic information
� Newton
� Finite-Difference Newton
� Quasi-Newton
� NIPS
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Constraints

� Constraint types
� BoundConstraint(numconstraints, lower, upper)
� LinearInequality(A, rhs, stdFlag)
� NonLinearInequality(nlprob, rhs, numconstraints, stdFlag)
� LinearEquation(A, rhs)
� NonLinearEquation(nlprob, rhs, numconstraints)

� Everything combined
� CompoundConstraint(constraints)
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Quick tour of some of the algorithms
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� Can handle noisy 
functions

� Do not require 
derivative information

� Inherently parallel
� Convergence can be 

painfully slow

Pattern search
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Conjugate Gradient Methods

� Two major classes
� Standard nonlinear conjugate gradient

� Two different types of line searches

� Limited Memory BFGS
� Unconstrained version available
� Bound constrained version under development
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Newton-type Methods

� Fast convergence 
properties

� Good global 
convergence 
properties

� Inherently serial
� Difficulties with 

noisy functions
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NIPS: Nonlinear Interior Point Solver

� Interior point method
� Based on Newton’s method for a particular system of 

equations (perturbed Karush-Kuhn-Tucker, KKT, 
equations, slack variable form)

� Can handle general nonlinear constraints
� Can handle strict feasibility
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Parallel Optimization
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Schnabel Identified Three Levels for 
Introducing Parallelism Into Optimization (1995) 

� Parallelize evaluation of function/gradient/constraints
� May or may not be easy to implement

� Parallelize linear algebra
� Really only useful if the optimization problem is large-scale

� Parallelize optimization algorithm at a high level, for 
example, multiple function evaluations in parallel
� Parallel Direct Search
� Generalized Pattern Search
� TRPDS
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Trust Region + PDS
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� Fast convergence 
properties of Newton 
method

� Good global 
convergence properties 
of trust region approach

� Inherent parallelism of 
PDS

� Ability to handle noisy 
functions
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Algorithm Choices Depend on Problem
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Example 1: unconstrained optimization

void init_rosen_x0(int ndim, ColumnVector& x);
void rosen(int ndim, const ColumnVector& x, double& fx, int& result);

int main() {

int ndim = 2;

FDNLF1 nlp(ndim, rosen, init_rosen_x0);

nlp.initFcn();

OptQNewton objfcn(&nlp);

objfcn.setSearchStrategy(TrustRegion);

objfcn.setMaxFeval(200);

objfcn.setFcnTol(1.e-4);

objfcn.optimize();

}
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Example 2: Constrained optimization
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Constrained optimization: Step 1
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Constrained optimization: Step 2
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Constrained optimization: Step 3
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Application: Protein Folding

void init_X0(int ndim, ColumnVector& x);
void eval_energy(int ndim, const ColumnVector& x, double& fx, int& 

result);
int main() {

PDB pdb(“t162.pdb”);  // loads pdb file

int ndim = 3 * pdb.NumAtoms();

FDNLF1 nlp(ndim, eval_energy, init_X0);

nlp.initFcn();

OptLBFGS optobj(&nlp);

optobj.setMaxFeval(10000);   

optobj.setFcnTol(1.e-6);

optobj.optimize();

}
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Energy Minimization Using LBFGS

�Energy Function: AMBER
�Protein 162; 
�N = 13728 (4576 Atoms)
�LBFGS with M=15
�Total number of LBFGS 

iterations = 11656
�Total number of function 

evaluations = 11887
�Each function evaluation 

takes approximately 5 
CPU sec

Protein T162 (from CASP5)
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Protein T162 (from CASP5)

� Initial configuration 
created using 
ProteinShop (S. 
Crivelli)

� Energy minimization 
computed using 
OPT++/LBFGS

� Final average RMSD 
change was 3.9

� Total simulation took 
approximately 32 
hours on a 1.7GHz 
machine with 512 
RAM
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Summary

� OPT++ can handle many types of nonlinear 
optimization problems

� The toolkit can be used to compare the effectiveness 
of several algorithms on the same problem easily

� The user needs to provide only functions for the 
objective function and the constraints
� If additional information is available it can be easily 

incorporated

� The code is open source and available at either
� http://www.nersc.gov/~meza/projects/opt++
� http://csmr.ca.sandia.gov/opt++
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Backup Material
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Comparison of TRPDS with other 
approaches
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Energy vs. LBFGS iterations for T162 Problem
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T162 Protein: ||gradient|| by atom
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4576 atoms

Distribution of ||gradient|| by atom

54 atoms have ||g||2 > 0.5


